about-banner

PNA Intermediates

PNA Intermediates

Creative Peptides offers high quality PNA synthesis intermediates to meet the diverse scientific needs of our customers.

Browse our catalog below to find your products of interest.

Structure Product Name / CAS / Cat Description / Size Price
Adenine-Bhoc Acetic Acid CAS:186046-80-0
Catalog:PR-001
Formula:C21H17N5O4
Formula Weight:403.39
Size:1 g/5 g/10 g
Adenine-CBZ Acetic Acid CAS:149376-67-0
Catalog:PR-002
Formula:C15H13N5O4
Formula Weight:327.29
Size:1 g/5 g/10 g
Cytosine-Bhoc Acetic Acid CAS:186046-78-6
Catalog:PR-003
Formula:C20H17N3O5
Formula Weight:379.37
Size:1 g/5 g/10 g
Cytosine-CBZ Acetic Acid CAS:144564-95-4
Catalog:PR-004
Formula:C14H13N3O5
Formula Weight:303.27
Size:1 g/5 g/10 g
Guanine-Bhoc Acetic Acid CAS:169287-79-0
Catalog:PR-005
Formula:C21H17N5O5
Formula Weight:419.39
Size:1 g/5 g/10 g
Guanine-CBZ Acetic Acid CAS:169287-69-8
Catalog:PR-006
Formula:C15H13N5O5
Formula Weight:343.29
Size:1 g/5 g/10 g

Introduction

Peptide nucleic acid (PNA) is a unique compound with a neutral amide backbone and combined peptide and nucleic acid properties. PNA can bind to DNA and RNA with high affinity and sequence specificity, forming a heterodimeric complex with high thermal stability and unique resistance to ionic strength changes.

PNA IntermediatesFig. 1 Structure of peptide nucleic acid compared to DNA

Synthesis of PNA Monomers

A variety of building blocks have been used to synthesize PNA and its analogs, including backbone structures, attachment of chiral and non-chiral groups to N-(2-aminoethyl) glycine, types of bases, etc.

Classic PNA Backbone Synthesis Method

  • Alkylation reaction
  • Reduction reaction of Schiff base
  • Mitsunobu reaction

Introduce Bases into the Backbone

All four bases are alkylated by amines to form base acetic acid derivatives (thymine acetic acid, cytosine acetic acid, adenine acetic acid, and guanine acetic acid), which are then linked to the unprotected nitrogen on the backbone using the usual method of peptide synthesis.

PNA Intermediates

  • Adenine-Bhoc Acetic Acid
  • Adenine-CBZ Acetic Acid
  • Cytosine-Bhoc Acetic Acid
  • Cytosine-CBZ Acetic Acid
  • Guanine-Bhoc Acetic Acid
  • Guanine-CBZ Acetic Acid

Advantages of PNA

  • PNA cannot be degraded by nucleases and proteases
  • PNA binds well to DNA and RNA with high specificity
  • The stability of PNA binding to RNA is much higher than that of binding to DNA
  • The PNA2/DNA triple helix structure formed by PNA and DNA can cause transcriptional arrest, and the PNA2/RNA formed by PNA and RNA can cause translational arrest

Applications of PNA

  • Telomerase inhibitors
  • Anti-HIV
  • For the treatment and research of gene-related disorders of the central nervous system
  • Drug carriers
  • DNA diagnostics
  • Labeling plasmid DNA vectors, target peptides, etc.
  • PCR

For Research Use Only. Not For Clinical Use.